Superconductor Computing for Neural Networks

نویسندگان

چکیده

The superconductor single-flux-quantum (SFQ) logic family has been recognized as a promising solution for the post-Moore era, thanks to ultrafast and low-power switching characteristics of devices. Researchers have made tremendous efforts in various aspects, especially device circuit design. However, there little progress designing convincing SFQ-based architectural unit due lack understanding about its potentials limitations at level. This article provides design principles units with an extremely high-performance neural processing (NPU). To achieve our goal, we developed validated simulation framework identify critical bottlenecks performance-effective NPU. We propose SuperNPU, which outperforms conventional state-of-the-art NPU by 23 times terms computing performance 1.23 power efficiency even cooling cost 4K environment.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Quantum computing in neural networks

According to the statistical interpretation of quantum theory, quantum computers form a distinguished class of probabilistic machines (PMs) by encoding n qubits in 2n pbits. This raises the possibility of a large-scale quantum computing using PMs, especially with neural networks which have the innate capability for probabilistic information processing. Restricting ourselves to a particular mode...

متن کامل

Soft Computing - Neural Networks Ensembles

Neural Network ensemble is a learning paradigm where a collection of finite number of neural networks is trained for the same task. It is understood that the generalization ability of neural networks, i.e., training many neural networks and then combining their predictions. ANN ensemble techniques have become very popular amongst neural network practitioners in a variety of ANN application doma...

متن کامل

Computing Iterative Roots with Neural Networks

Many real processes are composed of a n-fold repetition of some simpler process. If the whole process can be modelled with a neural network, we present a method to derive a model of the basic process, too, thus performing not only a systemidentification but also a decomposition into basic blocks. Mathematically this is equivalent to the problem of computing iterative or functional roots: Given ...

متن کامل

Fast Arithmetic Computing with Neural Networks

Neural networks can be viewed as circuits of highly interconnected parallel processing units called ‘neurons’. The most commonly used models of neurons are linear threshold gates or, when continuity or differentiability is required, elements with a sigmoid input-output function. Because of the recent advance in VLSI technology, neural network has also emerged as a new technology and has found w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Micro

سال: 2021

ISSN: ['1937-4143', '0272-1732']

DOI: https://doi.org/10.1109/mm.2021.3070488